个人信息:
姓名:许芳源
职称:讲师
职务:
电话:
邮箱:fangyuanxu@ytu.edu.cn
办公地点:院馆214
教育背景:
2021.04-2024.03,名古屋大学,工学研究科,工学博士
2019.04-2021.03,名古屋大学,工学研究科,工学硕士
2013.09-2017.07,山东科技大学,机械电子工程学院,工学学士
工作履历:
2024.07-至今,烟台大学,机电汽车工程学院,讲师
研究方向:
信息物理系统,故障检测,图论,稀疏重建,多智能体控制,神经网络
科研项目:
1.Artificial Intelligence with Supervision from A Mathematical Model Research Project, Grant-in-Aid for Challenging Research (Exploratory), from the Ministry of Education, Culture, Sports, Science and Technology of Japan, 2019-2022,参与.
2.Diagnosis of Demand Response Implementation: The Challenge of 10x Performance and the Creation of On-Demand Information Acquisition Studies,Grant-in-Aid for Scientific Research (A), from the Ministry of Education, Culture, Sports, Science and Technology of Japan, 2021-2026,参与.
3.大规模需求响应中的异常检测技术,国家建设高水平大学公派研究生项目,2021-2024,主持.
研究成果:
一.学术论文
1.F. Xu, S. Azuma, K. Kobayashi, N. Yamaguchi, R. Ariizumi, and T. Asai:Default Detection in Demand Response Based on Block-Sparse Structure, International Journal of Electrical Power & Energy Systems, 2024.
2.F. Xu, S. Azuma, R. Ariizumi, and T. Asai: Performance Limitation of Group Testing in Network Failure Detection, IEEE Access, 2023.
3.F. Xu, R. Ariizumi, S. Azuma, and T. Asai: Tamper-Resistant Controller Using Neural Network and Time-Varying Quantization, Artificial Life and Robotics, 2020.
4.F. Xu, S. Azuma, K. Kobayashi, N. Yamaguchi, R. Ariizumi, and T. Asai: Detection of Defaulting Participants With Time-Varying Failure Rates in Demand Response, IFAC-PapersOnLine, 2020.
二.国际学会
1.F. Xu, S. Azuma, R. Ariizumi, and T. Asai: Minimum Number of Measurements in Enhanced Group Testing for Failure-edge Detection in Networks, 13th Asian Control Conference, 2022.
2.F. Xu, S. Azuma, K. Kobayashi, N. Yamaguchi, R. Ariizumi, and T. Asai: Diagnosis of Demand Response Based on Grouping Participants: A method to increase performance up to 20 times, 8 th Multi-symposium on Control Systems, 2021.
3.F. Xu, S. Azuma, K. Kobayashi, N. Yamaguchi, R. Ariizumi, and T. Asai: Detection of Defaulting Participants With Time-Varying Failure Rates in Demand Responses, 21st IFAC World Congress, 2020.
4.F. Xu, R. Ariizumi, S. Azuma, and T. Asai: Tamper-Resistant Controller Using Neural Network for Time-varying Quantized Control, SWARM2019, 2019.
三.获奖情况
1. 2022年日本电子情报通信学会优秀发表奖
2. 2021年名古屋大学博士研究助成金
3. 2020年服部国际奖学财团服部奖学金
4. 2020年日本电子情报通信学会优秀发表奖