姓名:冯慧
职称:副教授
职务:无
电话:
邮箱:fenghui_ytu@163.com
办公地点:院馆206
● 教育背景
2011/09 -2016/12,湖南大学,机械与运载工程学院,工学博士
2007/09 -2011/06,河北工业大学,机械工程学院,学士
● 工作履历
2017/01 – 至今,烟台大学,机电汽车工程学院,讲师
● 研究领域
数值计算
多物理场耦合
电磁成形
电磁铆接
● 科研项目及获奖情况
主持项目情况:
[1]国家自然科学基金青年基金《基于非结构网格和节点积分算法的电磁成形数值模拟关键技术研究》,20万元,主持,2018.01-2020.12;
● 代表性学术成果
论文:
[1] Feng Hui; Yang Shu; Yang Shengyuan; Zhou Li; Zhang Junfan; Ma Zongyi ; Strengthening mechanisms and mechanical characteristics of heterogeneous CNT/Al composites by finite element simulation, Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2106-2120
[2] Feng Hui; Liang Jiaqing ; A modified stable node-based smoothed finite element method based on low-quality unstructured mesh, Engineering Analysis with Boundary Elements, 2023, 150: 555-570
[3] Vu-Dinh, Hien; Feng, Hui; Jen, Chun-Ping ; Effective isolation for lung carcinoma cells based on immunomagnetic separation in a microfluidic channel, Biosensors-Basel, 2021, 11(1): 23
[4] Feng, Hui; Cui, Xiangyang ; Construction and application of a stable nodal integration method in computational electromagnetics on tetrahedral meshes, Journal of the Chinese Society of Mechanical Engineers, 2020, 41(5): 627-637
[5] Feng H, Cui X Y#, Li G Y, Coupled-field simulation of electromagnetic tube forming process using a stable nodal integration method, International Journal of Mechanical Sciences, 2017, 128-129: 332-344.
[6] Feng H, Cui X#, Li G, A stable nodal integration method for static and quasi-static electromagnetic field computation, Journal of Computational Physics, 2017, 336: 580-594.
[7] Feng H, Cui X Y, Li G Y#, A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics, Engineering Analysis with Boundary Elements, 2016, 62: 78-92.
[8] Cui X Y, Feng H, Li G Y#, Feng S Z, A cell-based smoothed radial point interpolation method (CS-RPIM) for three-dimensional solids, Engineering Analysis with Boundary Elements, 2015, 50: 474-485.
[9] Feng H, Cui X Y, Li G Y#, Feng S Z, A temporal stable node-based smoothed finite element method for three-dimensional elasticity problems, Computational Mechanics, 2014, 53(5): 859-876.